Semitopological groups, Bouziad spaces and topological groups
نویسندگان
چکیده
منابع مشابه
NEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS, TOPOLOGICAL GENERALIZED GROUPS, AND TOP SPACES
The purpose of this paper is to introduce new methods for constructing generalized groups, generalized topological groups and top spaces. We study some properties of these structures and present some relative concrete examples. Moreover, we obtain generalized groups by using of Hilbert spaces and tangent spaces of Lie groups, separately.
متن کاملL-FUZZIFYING TOPOLOGICAL GROUPS
The main purpose of this paper is to introduce a concept of$L$-fuzzifying topological groups (here $L$ is a completelydistributive lattice) and discuss some of their basic properties andthe structures. We prove that its corresponding $L$-fuzzifyingneighborhood structure is translation invariant. A characterizationof such topological groups in terms of the corresponding$L$-fuzzifying neighborhoo...
متن کاملPRECOMPACT TOPOLOGICAL GENERALIZED GROUPS
In this paper, we introduce and study the notion of precompacttopological generalized groups and some new results are given.
متن کاملRemarks on extremally disconnected semitopological groups
Answering recent question of A.V. Arhangel’skii we construct in ZFC an extremally disconnected semitopological group with continuous inverse having no open Abelian subgroups.
متن کاملFréchet-urysohn Spaces in Free Topological Groups
Let F (X) and A(X) be respectively the free topological group and the free Abelian topological group on a Tychonoff space X. For every natural number n we denote by Fn(X) (An(X)) the subset of F (X) (A(X)) consisting of all words of reduced length ≤ n. It is well known that if a space X is not discrete, then neither F (X) nor A(X) is Fréchet-Urysohn, and hence first countable. On the other hand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2013
ISSN: 0166-8641
DOI: 10.1016/j.topol.2013.08.008